Temporal fluctuation scaling in populations and communities.
نویسندگان
چکیده
Taylor's law, one of the most widely accepted generalizations in ecology, states that the variance of a population abundance time series scales as a power law of its mean. Here we reexamine this law and the empirical evidence presented in support of it. Specifically, we show that the exponent generally depends on the length of the time series, and its value reflects the combined effect of many underlying mechanisms. Moreover, sampling errors alone, when presented on a double logarithmic scale, are sufficient to produce an apparent power law. This raises questions regarding the usefulness of Taylor's law for understanding ecological processes. As an alternative approach, we focus on short-term fluctuations and derive a generic null model for the variance-to-mean ratio in population time series from a demographic model that incorporates the combined effects of demographic and environmental stochasticity. After comparing the predictions of the proposed null model with the fluctuations observed in empirical data sets, we suggest an alternative expression for fluctuation scaling in population time series. Analyzing population fluctuations as we have proposed here may provide new applied (e.g., estimation of species persistence times) and theoretical (e.g., the neutral theory of biodiversity) insights that can be derived from more generally available short-term monitoring data.
منابع مشابه
Fluctuation Scaling, Taylor’s Law, and Crime
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be ap...
متن کاملEstimating IDF based on daily precipitation using temporal scale model
The intensity –duration –frequency (IDF) curves play most important role in watershed management, flood control and hydraulic design of structures. Conventional method for calculating the IDF curves needs hourly rainfall data in different durations which is not extensively available in many regions. Instead 24-hour precipitation statistics were measured in most rain-gauge stations. In this stud...
متن کاملDetecting the Temporal Scaling Behavior of the Normalized Difference Vegetation Index Time Series in China Using a Detrended Fluctuation Analysis
Vegetation is an important part of terrestrial ecosystems. Although vegetation dynamics have explicit spatial and temporal dimensions, the study of the temporal process is in its infancy. Evaluation of temporal scaling behavior could provide a unique perspective for exploring the temporal nature of vegetation dynamics. In this study, the Global Inventory Modeling and Mapping Studies (GIMMS) Nor...
متن کاملTaylor Law in Wind Energy Data
The Taylor power law (or temporal fluctuation scaling), is a scaling relationship of the form σ ∼ 〈P 〉 where σ is the standard deviation and 〈P 〉 the mean value of a sample of a time series has been observed for power output data sampled at 5 min and 1 s and from five wind farms and a single wind turbine, located at different places. Furthermore, an analogy with the turbulence field is performe...
متن کاملA Multifractal Detrended Fluctuation Description of Iranian Rial-US Dollar Exchange Rate
The miltifractal properties and scaling behaviour of the exchange rate variations of the Iranian rial against the US dollar from a daily perspective is numerically investigated. For this purpose the multifractal detrended fluctuation analysis (MF-DFA) is used. Through multifractal analysis, the scaling exponents, generalized Hurst exponents, generalized fractal dimensions and singularity spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2014